

Ballast-free and water-tight for flat and sloping roofs

The storm-proof QS PV-anchors are specially designed for watertight and ballast-free mounting systems for solar panels, ventilation units and solar collectors on flat and sloping roofs using bituminous, plastic, zinc or EPDM roof coverings.

The mounting anchors are mechanically connected to the roof construction during installation and then sealed to be watertight. The QS PV-anchors not only have great advantages in terms of roof load, but they also ensure that important functions of the roof, such as water removal, are retained and that the risk of systems moving, and therefore the risk of roof damage, is a thing of the past.

CHARACTERISTICS AND ADVANTAGES

Can be used on flat, pitched and slightly slanting roofs

100% watertight connection to every type of roof material

Prevents damage to the roof material

Can be mounted on almost all substructures made from wood, metal and concrete

Connecting seals available for EPDM, PVC, bitumen and TPO roof materials

Resists high compressive (pushing) and tensile (pulling) forces

Ultra-lightweight

WANT MORE INFO? Call us on +31 (0)85 8000 501 or email info@blubase.com

Layout and components

Sizes and weight (including connecting seal)

Article number	Connecting seal	Weight	
35000	EPDM	+/- 440 g	
35001	Bitumen	+/- 820 g	
35002	ТРО	+/- 320 g	
35003	PVC	+/- 360 g	

*May vary slightly depending on the type and manufacture. *Other connecting seal type available upon request.

KIWA test results

Tensile tests

Substructure	Test direction	Result	
Wood	Vertical	5.70 kN	
Steel	Vertical	2.50 kN	
Concrete (1)	Vertical	3.60 kN	

(1) Results may vary in practice depending on the type of concrete. Additional on-site testing is recommended.

Description	Direction	Substructure	Result	Conversion	Ballast comparison
Dynamic wind resistance	Vertical	Steel	5.00 kPa	509.86 Kgf/m²	229.44 Kg/m²
Dynamic wind resistance	Vertical	Wood	4.50 kPa	458.87 Kgf/ m²	254.93 Kg/m²
Resistance to horizontal tensile force	Horizontal	Steel	2282 N	232.70 kg	-
Resistance to horizontal tensile force	Horizontal	Steel	8029 N	818.71 kg	272.90 Kg/m²

(1) KIWA test EN 16002:2010

(2) Tensile testing below rivet

(3) Tensile testing aluminium profile with three anchors

GENERAL INSTALLATION GUIDELINES

The QS PV-anchors are applied to support aluminium mounting rails for solar panels. The maximum prescribed mounting distance is 1.40 metres per mounting anchor. However, the exact wind loads and fixing distances should be calculated in advance. The client, project owner and architect must always obtain independent advice from a certified structural expert and/or calculator to ensure that the building regulations are adhered to. It is recommended to have the anchors mounted by certified specialists (roofers).